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A Novel Variable-Rate Classified Vector Quantizer
Design Algorithm for Image Coding

Wen-Jyi HWANG!, Yue-Shen TU', and Yeong-Cherng LU', Nonmembers

SUMMARY This paper presents a novel classified vector
quantizer (CVQ) design algorithm which can control the rate
and storage size for applications of image coding. In the algo-
rithm, the classification of image blocks is based on the edge
orientation of each block in the wavelet domain. The algorithm
allocates the rate and storage size available to each class of the
CVQ optimally so that the average distortion is minimized. To
reduce the arithmetic complexity of the CVQ, we employ a par-
tial distance codeword search algorithm in the wavelet domain.
Simulation results show that the CVQ enjoys low average dis-
tortion, low encoding complexity, high visual perception quality,
and is well-suited for very low bit rate image coding.

key words: vector quantization, fast codeword search, wavelet
transform

1. Introduction

Vector quantizers (VQs)[1] have shown to be effective
for image coding for their excellent rate-distortion per-
formance over traditional scalar quantization schemes.
However, the visual perception of a VQ can be poor
due to the possible edge degradation of the VQ. This is
because the image blocks containing edges usually con-
stitute a small fraction of the image; hence, the training
set that used for codebook design is populated with a
small fraction of edge vectors. As a result, edges are
in general poorly coded, appearing jagged in the recon-
structed images.

To improve quality of the visual perception of the
reconstructed images and to reduce the degree of edge
degradation, a number of classified VQ (CVQ) tech-
niques have been studied [1]-[4]. The CVQ techniques
classify the input image blocks into different classes,
and design one VQ for each class independently so that
the edge information can be properly preserved. How-
ever, many CVQs have a common drawback that each
class of these CVQs are constructed using the fixed-rate
full-search VQs; hence, the constraints of average rate
and the storage size can not be specified/controlled in-
dependently, and the computational complexity for the
encoding of the CVQs can be high.

In this paper, we present a novel CVQ design al-
gorithm for the image coding which enjoys the advan-
tages of low average distortion, high visual perception
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quality, and low computational complexity. Moreover,
the average rate and the storage size required by the al-
gorithm can be prespecified and controlled during the
design process. In the algorithm, we first classify the in-
put image blocks in accordance with their edge orienta-
tion. There are four classes of edge orientation consid-
ered in the CVQ: DC (i.e. no edge is presented in the
block), horizontally oriented, vertically oriented, and
diagonally oriented.

We construct a VQ for each class to reduce the pos-
sible edge degradation of the reconstructed images. The
codewords of the VQs are stored in the wavelet domain.
This is because the energy of codewords is concentrated
on few elements in the wavelet domain. Given a stor-
age size quota for each of the VQs, by truncating the
insignificant elements having little energy, more number
of codewords can be constructed without exceeding the
storage constraints. Therefore, the average distortion
for the VQs can be reduced. The number of insignifi-
cant elements of codewords are dependent on their edge
orientations. Hence, the dimension of the VQs for dif-
ferent classes are different. To control the average rate
and storage size of the CVQ, we allow these quantities
to be specified before the design. Then, we optimally
allocate the rate and storage size to the VQ for each
class to minimize the average distortion of the CVQ us-
ing the dynamic programming technique. The VQ of
each class is then constructed subject to the constraints
of the allocated rate and storage size.

To reduce the arithmetic complexity of the CVQ,
we utilize a partial distance search (PDS)[5] search
technique which performs the fast codeword search for
the variable-rate VQ encoding in the wavelet domain.
The fast search algorithm is able to reduce the com-
putation time for the encoding without sacrificing the
storage size and the performance of the CVQ. Simula-
tion results show that the CVQ algorithm is well-suited
for designing a very low bit rate and high dimension
VQ with low average distortion, high visual perception
quality and fast encoding time.

2. The CVQ Design Algorithm

Figure 1 shows the basic structure of our CVQ. During
the encoding process of the CVQ, a source vector x is
first classified in accordance with its edge orientation
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Fig. 1 The general structure of a classified VQ.

into one of the four classes: DC, horizontally oriented,
vertically oriented and diagonally oriented. Then x is
quantized by the VQ of the selected class. To ensure
proper reproduction at the decoder output, both the
class and codeword indices for x should be transmitted
to the decoder. Note that only one VQ is constructed
for each class. The VQ for different classes might not
have the same vector dimension, storage size and aver-
age rate.

The design of the CVQ involves the design of edge-
oriented classifier, the construction of the VQ for each
class subject to the rate and storage size constraints, and
the fast encoding technique for reducing the arithmetic
complexity for the variable-rate CVQ. In the following
subsections, we first describe the classifier. Then we
present the optimal rate and storage allocation for the
design of the CVQ, and the construction of the VQ for
each class after the allocation. Finally, we discuss a fast
codeword search technique which performs PDS in the
wavelet domain to reduce the encoding complexity.

2.1 An Edge-Oriented Classifier for the CVQ

Since the edge classification is performed in the wavelet
domain, in this section, we first briefly introduces some
basic facts of the wavelet transform. Let X be the n-
stage discrete wavelet transform (DWT) of a 2™ x 27
image block x. Then, as shown in Fig.2, X is
also a 2™ x 2™ block containing subblocks xro and
Xvk,XHk, XDk, & = 0,...,n — 1, each with dimension
2k x 2k Note that, in the DWT, the subblocks xy
(lowpass subblocks), and xvg, Xz, Xpk (vertical, hor-
izontal and diagonal orientation selective subblocks),
k=0,...,n —1, are obtained recursively from Xr,(x41)
with X7, = x. The decomposition of X1 into four
subblocks Xk, Xy, Xk, Xpg can be carried out using a
simple quadrature mirror filter (QMF) scheme as shown
in [6].

To perform the classification for a given input im-
age block x, we first note that the subblocks xy¢ and
Xgo in the DWT of x are actually scalars. The magni-
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Fig. 2 The result of a n-stage DWT of a 2 x 2" vector x.

tude of |xgo| and |xyo| can effectively reveals the edge
orientation of x. Based on these magnitudes, as shown
in Fig. 3, we divide the xgo — Xy plane into nine re-
gions. The image blocks with (x 0, Xv¢) located in the
region labelled “L,” “H,” “V,” and “D” are the DC,
horizontally oriented, vertically oriented and diagonally
oriented blocks, respectively. For simplicity, we num-
ber the DC, horizontally oriented, vertically oriented,
and diagonally oriented classes as class 1, class 2, class
3 and class 4, respectively. Figure 4 shows the loca-
tion of (xmo,Xvo) of image blocks of twelve 512 x 512
training images. The dimension of the image blocks
is 8 x 8. From Fig.4, it is observed that these loca-
tions are symmetric. Therefore, the regions shown in
Fig.3 can be symmetrically divided so that the corners
of these regions (a1,b1), (a1,b2), (az,b1), (ag,bs) satisfy
ag = —al,bz = —bl.

2.2 Design of the VQ in Each Class of the CVQ

The VQ design involves the truncation of coefficients of
codewords in the wavelet domain to reduce the code-
word dimension, and the optimal storage and rate allo-
cation for the VQ in each class to minimize the average
distortion of the CVQ. The detail discussion of the de-
sign is given below:

2.2.1 Coeflicient Truncation of Codewords in the
Wavelet Domain

Let p; be the probability that an input image block is
classified to class ¢, and let r; (average bpp) and m;
(number of vectors with dimension 2™ x 2™) be the con-
straint of the average rate and the storage size for con-
structing the VQ for class ¢, respectively. Moreover, let
R and M be the overall constraints of average rate and
storage size of the CVQ, respectively. Then,

4
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Fig. 3 The partition of xg¢ — xvo plane for the edge classifi-
cation, where L,H,V, and D denote the regions for DC blocks,
horizontally oriented blocks, vertically oriented blocks, and di-
agonally oriented blocks, respectively.

Fig. 4 The location of the wavelet coefficients xzo and xyo of
8 x 8 image blocks in the xgp — xyo plane.

4
=1

where R, is the average rate for transmitting the class in-
dices and Zle p;7; is the average rate for transmitting
the codeword indices. Here we assume both the class
indices and codeword indices are entropy-encoded. Let
T'; be the set of the image blocks classified to class 4.
Now, for T'; given, let d;(r;,m;) be the minimum dis-
tortion attainable by any VQ with constraints 7; and
m;. In other words,

d;(rs, m;) < di(r;,m;, Q) for all Q 3)

where @ represents a VQ, and d;(r;, m;, Q) is the distor-
tion of that VQ, over the set I';, with constraints r; and
m;. Then, given the allocation {(r;,m;),7 = 1,...,4}
and the classifier, the minimum average distortion of the
CVQis D = Zf‘zl pid;(ri,m;). Hence, the optimal al-
location {(r},m}),i = 1,---,4} minimizing D is given
by

{(rf,mf),i:l,u-,él}:
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4
i i di (75, mi) 4
arg min aper Zp (rsym;) (4)

{(reym,),i=1,- i—1

where

T: {{(rl,mz),z: 1,"',4}:

4 4
> mi <M, ZpichgR}. (5)

i=1 i=1

To proceed with the optimization, we need to know
d;(r;,m;), the lowest distortion attainable by any VQ
for class ¢ with rate r; and storage size m;, that is, the
distortion of the optimum VQ for class ¢, denoted by Q7.
We also need @} to complete the design of the overall
CVQ. However, no known method exists for finding @}
and the corresponding distortion d;(r;, m;). In [7], the
entropy-constrained vector quantizer (ECVQ) [8] design
algorithm is used to approximate @ and d;(r;,m;).
The ECVQ algorithm is simple to implement and per-
forms well subject to the average rate and alphabet size
constraints, However, the algorithm might not be able
to fully utilize the storage size available to minimize the
average distortion of the VQ. Therefore, here we present
a novel technique which modify the ECVQ algorithm
for the approximation of Q.

In the technique, the ECVQ algorithm is still used
for the VQ design. After the design of VQ, all the code-
words are then saved in the wavelet domain. By using
the unitary DWT, the square distances between source-
words and codewords before and after the transform are
identical. Therefore saving the codewords in the wavelet
domain will not increase the average distortion of the
VQ. In addition, we note that the energy of codewords is
concentrated on only few coefficients in the wavelet do-
main. Hence, by truncating the insignificant coefficients
having little energy in the wavelet domain, a significant
amount of storage size can be saved with little increase
in average distortion. Equivalently, given a constraint
of storage size, by removing the insignificant coefficients,
more number of codewords can be constructed without
exceeding the storage constraint. Therefore, the average
distortion for the VQ can be reduced. To illustrate these
facts in more detail, we first start with the approxima-
tion of d;(r;,m;) using the simple ECVQ algorithm.

Given the constraints r; and m;, let B be the re-
sulting codebook after ECVQ design. Given an input
image block x, let p;/; be the probability that after x
is classified to the class i, the j-th codeword in B, yJ,
is selected as the reproduction codeword for x. Define
the modified distortion measure between x and y’ as

p(x,y7) = D(x,y’) — slogp; i, (6)

where s is the Lagrange multiplier obtained when con-
structing the ECVQ for class 4, and D(u,v) = >, (us —
v;)? is the squared distance between u and v. Let y?
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be the reproduction codeword of x. For an optimal
encoder for a variable-rate VQ, ¢ should be such that

8]

q=arg };1]-123} p(x,¥7). @)
The average distortion of the ECVQ therefore is
E{d(x,y?)}, where y? satisfies Eq.(7). 1In [7],
E{d(x,y?)} is used for the approximation of d;(r;, m;).
Let Y7 be the DWT of y’. For an unitary DWT, it can
be shown that D(x,y’) = D(X,Y7). Hence, p(x,y?) =
p(X,Y7) where p(X, Y7) = D(X,Y7)—slogp;/;. That
is, storing codewords in the wavelet domain will not in-
crease the average distortion of the ECVQ.

To see how the truncation of insignificant coeffi-
cients in the wavelet domain can improve the approxi-
mation of d;(r;, m;), we let Y7 be the truncated version
of Y7. Since the insignificant coefficients in the wavelet
domain for different classes might also be different, we
consider each class separately for the truncation. For a
sourceword x in class 1, the subblocks Xz (y,—1), Xy (n—1)
and Xp(n—1) in general contain little energy. Hence, for
each of the codewords in class 1, these subblocks can be
truncated. The dimension of the codewords after trun-
cation, N1, therefore is only N; = 2771 x 21, In class
2, little energy is contained in the subblocks xy (1)
and Xp(,_1) of a sourceword x. Hence, we can trun-
cate these insignificant subblocks for the codewords in
class 2. The dimension of codewords after truncation
therefore is No = 27 x 27!, Similarly, in class 3, the
subblocks X (5, 1) and Xp(n_1y of a sourceword x are
insignificant subblocks containing little energy. Hence,
these subblocks for the codewords in class 3 can be
truncated. The dimension of codewords after trunca-
tion, N3, is 27! x 2”. Finally, in class 4, the energy is
distributed more uniformly in the wavelet domain than
other classes. Hence, we do not truncate any subblock
in the wavelet domain, and N4 = 2" x 2",

Let x be the input image block classified to the
class i. To encode x using the truncated codewords,
we first note that all the input image blocks for the en-
coding have the same dimension 2™ x 2™. Hence, after
the classification, the image blocks belonging to each
class have to be truncated in the wavelet domain in the
same manner as the codewords for that class so that both
truncated codewords and image blocks in the same class
have the same dimension. In addition, although all the
image blocks for encoding are squares with dimension
2™ x 2™, the size of images can be rectangular with di-
mension 251 x 2%2 where k; and k, are not necessarily
equal, but are multiples of n.

Let X be the DWT of x and X be the truncated
version of X. Define

p(X,Y7) = D(X,Y7) — slogp;i- (8)

The encoding of input image blocks given the truncated
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codewords is based on p(X, Y7). Let Y4 be the selected
truncated codeword for representing x, then

- i X, Y. 9
q argj:r}gljlgB}p( ,Y7) )

Since the VQ only stores the truncated codewords in the
wavelet domain, after the decoding, the selected trun-
cated codeword in the spatial domain has to be ob-
tained. Let §¢ be the inverse DWT of Y?. Since X:’q is
the truncated version of Y9, if the dimension of Y is
not 2" x 2™, we can simply fill the truncated coefficients
with zero when taking the inverse transform. The aver-
age distortion of the VQ based on the truncated code-
words is therefore E{d(x,y?)}, where ¢ satisfies Eq. (9).

The truncated insignificant coefficients contain lit-
tle energy. Hence, first we have D(X,Y7) ~ D(X,Y?),
and therefore p(x,y7) ~ p(X,Y7). Secondly, since
d(y?,y7) = d(Y?,¥7), it follows that d(y?, y7) is equal
to the total energy of the truncated insignificant coef-
ficients, and therefore is small. Based on these facts,
we conclude that the ¢’s obtained from Egs. (7) and (9)
in general are the same, and the difference between y?
and y? is small. Therefore, with the same number of
codewords, the VQ based on the truncated codewords
has approximately the same average distortion with that
of the VQ based on codewords without truncation. In
addition, since the storage size for saving the truncated
codewords is less than the storage size for saving the un-
truncated codewords, given a storage size constraint, the
VQ based on the truncated codewords can have more
codewords in the codebook and consequently achieves
lower average distortion. Therefore, using the VQ with
truncated codewords can have a better approximation
of di(ri,mi). ‘

To approximate d1(r1, my), since the dimension Ny
is only 2"~ ! x 2771, we can first use ECVQ to design
a variable-rate VQ subject to the constraint of average
71 bpp and 4m; codewords with dimension 2™ x 2.
Since the dimension of codewords after the truncation
in the wavelet domain is only one quarter of the di-
mension before the truncation, although we use 4m;
codewords for the design of the ECVQ, the resulting
storage size after the truncation does not exceed the
storage constraint. Therefore, d; (r1,m1) can be approx-
imated by the ECVQ with average rate ; and number
of truncated codewords 4m; with dimension N;. In
class 2, The dimension of codewords after truncation is
Ny = 2" x 2"~ To approximate da (72, ms2), we can use
ECVQ to design a variable-rate VQ subject to the con-
straint of average ro bpp and 2mgy codewords with di-
mension 2™ x 2. After the design, we then truncate the
insignificant subblocks of codewords in the wavelet do-
main to obtain the approximation of Q3 and da(rz, ms).
Similarly, in class 3, the dimension N3 is 271 x 27,
Consequently, the approximation of ds(r3,ms) can be
obtained in a similar fashion as that of da(rg, mg) ex-
cept that the subblocks to be truncated are different.
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Finally, in class 4, Ny = 2™ x 2™ and no truncation
is necessary. Hence, we use the ECVQ algorithm sub-
ject to the rate r4 and storage size my codewords with
dimension 2" x 2™ for the approximation of dg(ry, my4).

2.2.2 Optimal Rate and Storage Allocation

After the tables containing d;(rs,m;),i =1,...,4, for a
set of discrete r; and m; are obtained, we now consider
the optimal rate and storage allocation problem given
in Eq.(4). Since the rates and storage sizes take only
positive values and are stored as discrete values in ta-
bles, and the objective function in Eq. (4) is separable,
one can iteratively use the dynamic integer program-
ming technique[9] to find the optimal solution. That
is, instead of considering both allocation problems si-
multaneously, one can solve them iteratively, where each
iteration consists of two steps. In step one, the rate al-
location is fixed to the values determined in the previ-
ous iteration, and the optimal storage allocation which
minimizes the distortion is found using the dynamic
programming technique. In step two, the storage values
obtained in the previous step are fixed, and the optimal
rate allocation which minimizes the distortion is found
using the dynamic programming technique. The iter-
ations are continued until the overall distortion ceases
to decrease appreciably, at which point the sets of stor-
age and rate allocation values are considered to be the
solution of the optimization problem. This iterative op-
timization with respect to two sets of variables yields a
partial optimal solution (POS)[10] to the optimization
problem.

After the optimal rate and storage allocation is ac-
complished, for each class ¢, the VQ associated with that
class is constructed using the ECVQ algorithm with rate
r; and storage size m; (that is, 4my codewords for class],
2ms codewords for class 2, 2m3 codewords for class 3,
and my4 codewords for class 4). The codewords after de-
sign are stored in the wavelet domain with insignificant
coefficients truncated. This completes the design of VQ
for each class of CVQ.

2.3 Fast Codeword Search Algorithm for the Encod-
ing of CVQ

During the encoding process of the CVQ, after the clas-
sification, from Eq.(9), the exhaustive search process is
required. Therefore, without the fast codeword search
algorithm presented in this subsection, the arithmetic
complexity of the CVQ can be high.

The objective of using the fast search algorithm for
the variable-rate CVQ is to reduce the computation time
for finding the codeword y? satisfying Eq. (9) among the
codewords of the selected class after the edge classifica-
tion. The algorithm is an extension of the fast algorithm
presented in [11] for fixed-rate VQs which perform the
PDS in the wavelet domain. The algorithm enjoys the
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following advantages. Before the fast search, the DWT
of the codewords have been obtained and saved in the
codebook. Moreover, since the DWT of the input im-
age block for encoding has been obtained already after
the classification, no extra computation overhead is re-
quired to perform the fast search for the CVQ. In ad-
dition, in the DWT of a codeword, most of the energy
of the codeword will be concentrated in low-pass sub-
blocks. Hence, when the PDS is started at the locations
which contain more energy in the wavelet domain, the
computation time for performing the codeword search
can be significantly reduced.

To perform the PDS, as shown in the Fig. 5, we in-
dex the elements of vectors X and Y7 in the zig-zag or-
der. Let X; and Ytj be the ¢-th element of X and Y7 , re-
spectively. Moreover, let Df (X, Y7) = S27_ (X —Y{)?
be the partial distance between X and Y7. Therefore,

D(X,Y7) > Df (X, YY). (10)

Suppose now x is classified into the class 7. Let
P (X, Y7) = D/(X,Y7) — slogp;/;. To perform
the fast codeword search among the truncated code-
words Y!,..., Y™, where n; is the number of code-
words for class ¢ after the VQ design, we initialize
the current closest codeword to be Y", where h =
arg min; L (X, Y7, and the current minimum distor-
tion pp;n to be p(X,Yh). For each truncated code-
word Y7 to be searched, we compute P (X, Y7). Sup-
pose pX(X,Y7) > pmin, it follows from Egs. (8), (10)
that p(X,Y?) > pmin. Hence, Y7 is not the clos-

! ! ! ]
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class 3 class 4

Fig. 5 Zig-Zag ordering of coefficients of codewords for
different classes in wavelet domain for PDS.
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est codeword to X and can be rejected. Suppose
P (X, Y7) < ppin, then we perform the following PDS
process. Starting from f = 2, for each value of f,
f =2,...,N;, we first evaluate p/(X,Y7). Suppose
pf(f(,?j) > pmin, then from Egs. (8), (10), it follows
that p(X,Y?) > pmin and Y7 can be rejected. Other-
wise, we go to the next value of f and repeat the same
process. This PDS process is continued until Y7 is re-
jected or f reaches N;. If f = N, then we compare
p(X,Y7) with ppin. If p(X,Y?) < pmin, then the cur-
rent minimum distortion po,, is replaced by p(X, YY)
and the current closest codeword to X is set to Y7. After
all the codewords are searched, the final current closest
codeword is then the actual closest codeword to X, and
the pmirn 1s the corresponding modified distance.

3. Simulation Results

In this section, we present the simulation results of CVQ
for image coding. The training data for the design of
CVQ are twenty four 512 x 512 images. The dimen-
sion of image blocks is 8 x 8. The wavelet used in the
classification and in the fast search algorithm is the sim-
ple Haar wavelet[6] (i.e., h(n) = %,n = 0,1) so that
no multiplication is required for the wavelet transform.
Hence, the corresponding computation overhead can be
small. In the design of classifier, we note that proper
selection of (a1,b;) can improve the performance of the
CVQ. This is because the selection of suitable values
of (a1,b1) can help to effectively partition xpo — Xvo
plane as shown in Fig. 3 so that image blocks locating
in the same region have similar energy distribution in
the wavelet domain. Consequently, it is easier for us
to find a good codebook for each class and the per-
formance of the CVQ can be improved. Selection of
(a1,b1) depends on the wavelet used for classification,
and in general is accomplished experimentally. From
our experiments, for Haar wavelet used in the paper,
the parameters a; = by = 60 performs relatively well
than other values for classification and coding. There-
fore, we let a; = 60 and b; = 60 for the partition of
X0 —Xvo space. The probability for each class is equal
to the number of training vectors fall into that class di-
vided by total number of training vectors. Based on the
partition, the probability for each class is p; = 0.61,
pe = 0.11, p3 = 0.14 and py = 0.14.

Table 1 shows the result of rate and storage allo-
cation for each class subject to the total average rate
constraint of R = 0.190 and storage size constraint of
M = 17000. From the table, it is observed that, al-

Table 1 Rate and storage allocation for each class.
class 1 | class 2 | class 3 | class 4

Rate r; 0.142 0.183 0.189 0.202

Storage size m; | 1250 2750 3500 9500
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though a large portion of image blocks belong to the
DC class, the average rate and storage size allocated to
the DC class are less than those allocated to the other
classes. This is because the DC class contains only low-
pass image blocks. To quantize low-pass image blocks
with a low average distortion, a small amount of rate
and storage size is necessary. However, for the other
classes containing high-pass image blocks, more amount
of average rate and storage size are required for the VQs
to obtain a low average distortion. We also note that
this result is quite consistent with the result of bit allo-
cation shown in [2].

The performance measure of the VQ is the PSNR,
which is equal to 2552 divided by the average distortion
(mean squared-error) of the quantized image. Table 2
shows the PSNR of various existing coding techniques
and the CVQ subject to the constraints of average rate
0.190, and storage size 17000, respectively. The PSNRs
for the algorithms shown in Table 2 are measured on
the “Lena” image which is outside the training data.
Form the table, we observe that at lower average rates,
the CVQ enjoys higher PSNR than other techniques.
This is because the CVQ is able to efficiently control
and use the storage size available to achieve a higher
PSNR; whereas, other techniques might not have full
freedom to adjust the storage size of the coding system
to reduce the average distortion. The original and re-
constructed “Lena” images encoded by our CVQ are
shown in Fig.6. To further show the effectiveness of
our algorithm, in addition to the “Lena” image, we
also compress two other test images “Pepper” and “F-
16” (outside the training data) using the same CVQ in
Table 2, and compare the coding results with those of
the same test images encoded by JPEG. Table 3 shows
the PSNRs for these test images coded by both CVQ and
JPEG. From the table, it can be observed that, as com-

Table 2  Performance of various coding techniques for the
image “Lena.”

Technique Rate | PSNR
WAVELET VQ[12] 021 | 29.11
EZW[13] 0.25 | 33.17
DCT-CVQ[2] 0.32 | 31.41
Trellis Coded DCT [ 14] 025 | 32.49
Trellis Coded Wavelet[15] 0.27 | 34.01
SA-W-VQ[16] 0.25 | 33.97
SPIHT [17] 0.20 | 33.25
CVQ (storage constraint M = 17000) | 0.19 | 34.13

Table 3  Performance of our algorithm and JPEG for various
test images. The average rate of the CVQ is 0.19 bpp.

CvVQ JPEG[18]

(M = 17000)

PSNR rate | PSNR
Lena 34.13 0.40 | 3342
Pepper | 34.77 041 | 34.24
F-16 34.57 0.54 | 33.73
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(b)

Fig. 6 The original test image “Lena” and its reconstruction after quantized by our

variable-rate CVQ subject to rate constraint 0.19 and storage size 17000.

image. (b) reconstructed image.

(a) original
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Fig. 7 PSNRs of our CVQ algorithms with and without truncating codeword coefficients
in the wavelet domain for various storage size constraints.

pared with JPEG, our algorithm also achieves higher
PSNR at lower average rate. In addition, the generality
of the CVQ algorithm is demonstrated from the high
performance our algorithm has for different test images
in Table 3.

Figure 7 shows the PSNR of our CVQ algorithm
for various storage size constraints. The average rate
constraint is 0.19. The PSNR is again measured on
the test image “Lena.” From the figure, we observe that
the PSNR of the CVQ is improved by increasing the
storage size constraint of the CVQ. For the comparison
purpose, we also implement the CVQ algorithm with-
out truncating the codeword coefficients in the wavelet
domain [19], but with the same classifier, and rate and
storage allocation algorithm. To ensure meaningful

comparison between the two techniques, since the stor-
age size of the CVQ in this paper is specified in terms
of the number of vectors with dimension 2™ x 2", the
storage size of the CVQ without truncating is also spec-
ified in the same way. We can find from the figure that,
subject to the same average rate and storage size con-
straints, the CVQ which truncates insignificant coeffi-
cients of codewords in the wavelet domain perform bet-
ter than the CVQ which does not. This is not surprising
because, subject to the same storage size constraint, the
CVQs truncating insignificant coefficients can include
more codewords in the codebook for the encoding.
The arithmetic complexity of a VQ in general is
defined as average number of distance calculations per
image block. Since, without truncating insignificant co-
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Table 4  Arithmetic complexities of various codeword search
schemes for the CVQ.

Exhaustive Search 6828.17
PDS[5] 301.51
PDS + ordering[20] | 199.50
PDS + wavelet 75.42

efficients of codewords in the transform domain, one
distance calculation requires 2™ x 2™ multiplications, we
therefore define the arithmetic complexity of the CVQ
presented in this paper as T = Jﬁ, where 17 is
the average number of multiplications per image block
(sourceword).

Table 4 shows the arithmetic complexities of the
CVQ for encoding the test image “Lena.” The stor-
age size constraint is 17000. From the table, it is ob-
served that the fast codeword search using the PDS in
the wavelet domain requires only approximately 1.1% of
the arithmetic complexity of the traditional exhaustive
search schemes (that is, performing the full-search in the
original domain). Moreover, our fast search technique
also enjoys lower arithmetic complexities as compared
with other fast search methods.

Based on these simulation results, we conclude that,
by combining the CVQ design technique with the fast
PDS in the wavelet domain for the codeword search, we
are able to construct a VQ with high compression ra-
tio, high PSNR, high visual quality and low arithmetic
complexity.

4. Conclusion

A novel variable-rate CVQ design algorithm is pre-
sented for image coding. The algorithm can achieve a
higher PSNR at lower bit rate than other existing coding
techniques. When performing the PDS in the wavelet
domain for the encoding, the algorithm can have very
low computational complexity. In addition, the algo-
rithm allows the average rate and storage size of the
CVQ to be pre-specified before the design. Simulation
results show that the algorithm is well-suited for the
very low bit rate image coding where high PSNR, high
visual quality, and fast encoding time are required.
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