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PAPER

A Complementary Pair LMS Algorithm for Adaptive

Filtering®

SUMMARY This paper presents a new algorithm that can
solve the problem of selecting appropriate update step size in the
LMS algorithm. The proposed algorithm, called a Complemen-
tary Pair LMS (CP-LMS) algorithm, consists of two adaptive
filters with different update step sizes operating in parallel, one
filter re-initializing the other with the better coefficient estimates
whenever possible. This new algorithm provides the faster con-
vergence speed and the smaller steady-state error than those of a
single filter with a fixed or variable step size.

key words: adaptive filter, system identification, parametric esti-
mation

1. Introduction

In adaptive filtering, the LMS algorithm is very popular
for its simplicity and predictable behavior, but the com-
promise must be made between the convergence (track-
ing) speed and the steady-state error. This is because
the LMS algorithm updates the adaptive filter coeffi-
cients with a term whose magnitude is proportional to
the so-called step size u. To obtain the fast convergence
speed, u has to be relatively large but using a large
produces a large steady-state error. To obtain the small
steady-state error, p has to be relatively small but using
a small p makes the convergence very slow[1].

To solve this problem, many variable step size al-
gorithms[2]-[ 6] that try to achieve both the fast conver-
gence speed and the small steady-state error have been
developed. However, the performances of these algo-
rithms are highly dependent on the algorithm parame-
ters which are selected without specific rules.

To provide strictly controlled performance and to
eliminate the conflict between the accuracy and the
speed aspect, we introduce a new adaptive filtering al-
gorithm called a CP-LMS (Complementary Pair LMS)
algorithm. The new algorithm uses two adaptive filters
operating in parallel with different step sizes. The esti-
mation errors of two filters are compared, and the coef-
ficients of one filter is used for re-initializing the other
filter to speed up the convergence (tracking) speed.
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2. Adaptive FIR Filtering

Let x(n) be the input for a unknown system H, which
is modeled by the filter coefficient by, 0 < k < K. Then
the output y(n) of H is given by

K
y(n) =Y bya(n— k) =x"(n)b (1)
k=0
where x7(n) = [ z(n) z(n — 1) ... z(n — K) | and
BT = [ by by ... bxl.

Usually y(n) is corrupted by zero-mean additive
noise v(n), so the observed output of H is given by

d(n) =y(n) +v(n) . @

In the system identification configuration[1], the
input to the adaptive FIR filter is z(n) and the filter
output z(n) is

z(n) = Z be(n)z(n — k) = x7 (n)b(n) 3)

where x¥'(n) = [ z(n) z(n — 1) ...
bT(n) = [ by(n) by(n) ... bx(n)]. X

The adaptive filter coefficients br(n), 0 £ k < K
are estimated such that the difference between d(n) and
z(n), defined as the estimation error

e(n) = d(n) — z(n) , (4)

approaches zero.

The most popular adaptive FIR filtering algorithm
is the LMS (Least Mean Square) algorithm|[1], which
uses the coefficient update equation:

z(n — K) ] and

b(n+ 1) = b(n) + pe(n)x(n) . (5
3. Complementary Pair LMS

A single adaptive filter with a fixed update step size u
poses the following problem. To obtain the fast con-
vergence speed, 4 has to be relatively large but using a
large 44 produces a large steady-state error. To obtain
the small steady-state error, x4 has to be relatively small
but using a small ;1 makes the convergence very slow.
To solve this problem, we employ two adaptive filters
with different update step sizes operating in parallel,
complementing each other.
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Figure 1 shows the block diagram of the CP-LMS
algorithm. One filter which has the larger step size
for the fast convergence speed is called the speed mode
filter, whose coefficients are updated by

A ~

bs(n + 1) = bs(n) + uses(n)x(n) 6)
where
€s (‘77,) = d(n) —x (n)f)s (’I’L) : )

The other filter which has the smaller step size p, for
the small steady-state error is called the accuracy mode
filter, whose coefficients are updated by

ba(n+ 1) = ba(n) + peeq(n)x(n) ®)
where
eq(n) = d(n) — xT(n)ba(n) . ©)

The two filters operate in parallel, and e,(n) and e, (n)
are supplied to the controller that re-initializes the ac-
curacy mode filter.

This re-initialization controller replaces b, (n) with
b,(n) for every M-th coefficient update, if the local av-
erage of ¢2(n) is less than the local average of e2(n)
for J consecutive comparisons with interval length M.
This re-initialization of the accuracy mode filter can be
mathematically expressed as

bs(n+1) if n(mod M) =0 and
J
ba(n+1) = HQ(n_jM):l
=1
bu(n+1) otherwise
(10)

observed output

ir::i:: "€ [ unknown system with

x(n) additive noise d{n)
re-initialization
controlier
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+
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* Speed mode adaptive LMS filter
= by(n+1) = by(n) + u, e,(n) x(n) where e(n) = d(n) - x"(n) by(n)

e Accuracy mode adaptive LMS filter
= by(n+1) = by(n) + 1, &4(n) x(n) where e,(n) = d(n) - xT(n) b,(n)

* Re-initialization control for b,(n)

. J N : length of x(n)
b,(n+1) = { by(n+1) if n(mod M) = 0 and LT Q(n1M) =1 | M ; comparison interval
—a .
b,(n+1) otherwise 1<<M<<N
m-i{l - mgl 5 J : number of comparisons
where Q(m) = { 1if e o) < 2 e20) 1<<J<<M

0 otherwise

Fig. 1 The CP-LMS algorithm block diagram.
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where M is the comparison interval, J is the number
of comparisons, and Q(m) is a two-valued function de-
fined as

m+M m+M
Q) =1 ! if Y;m (i) < ; €2 (q) (11

0 otherwise .

Since Q(m) is evaluated only once in every M updates
and the past values of @Q(m) can be saved, the total
computations needed for the CP-LMS is 4K 4+ 4 multi-
plications and 4K + 2 additions per update.

The size of M should be sufficiently large, M > 1,
so that the statistical average of e2(n) and e2(n) can
be obtained. Also, M should be much smaller than
N, M < N, where N is the length of the training in-
put z(n), so that a sufficient number of re-initialization
is possible. Therefore, the comparison period M must
satisfy the inequality

1« M <N . (12)

A simple choice for M is M = v/N which satisfies (12)
and shows good performance in simulations.

The number J should be chosen according to the
training input length and the noise levels. The total
comparison length JM should be much smaller than
N, JM < N, so that a prompt re-initialization is en-
sured. If we have chosen M = +/N, then this leads to
the condition J <« M. For low SNR, we must have
J > 1, so that the mistaken re-initialization, due to the
noise signal, is avoided. Therefore, under low SNR, the
number of comparison J must satisfy inequality

l<J< M. (13)

For high SNR, we can choose J close to 1 for more fre-
quent re-initialization, since the probability of mistaken
re-initialization due to the noise signal would be small.
This means J only have to satisfy

l<JK M. (14)

The simulations show that, for SNR of 30dB, the value
J = 3 is found to be sufficient.

The re-initialization of the accuracy mode filter oc-
curs when b,(n) approaches faster to the true value b
than Ba(n) due to the larger step size ps. Since the
accuracy mode filter is re-initialized with better coeffi-
cient estimates whenever possible, the convergence can
be reached in shorter time with the desired accuracy set
by the smaller update step size pq.

The step size pus could be large as long as stable
convergence is maintained. The upper bound of u; is
given by a well-known inequality [7]

1 1
P < GEx(m)xT ()} KE{z2(n)}

(15)

where K is the vector length of x(n).
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The step size u, could be small as long as conver-
gence can be reached within the given training signal
length V. Since the total absolute sum of the expected
update terms must satisfy

N-1

Z lE{Maea(n)z(n -
we can write

N (ua\/QE{dz(n)}E{xz(n . k)}) >l (7

where we have used a cross-correlation property [8]

B {ea(n)z(n — k)} < VE{€2(n)} E {22(n — k)}
(18)
and an assumption E {eZ(n)} < 2E {d*(n)}. If [b| <

1, then the sufficient condition for y, can be derived
from (17), which is

1

o > . 19
he > N AR @ B (4
Combining (15) and (17), we get

1
e < g <y < e 20
N30 Ha < Ko (20)

where 0% = E{d?(n)} and ¢2 = E{z?(n)}. However,
1o must be much smaller than ps so that the accuracy
mode filter have substantially smaller steady-state error
than the speed mode filter, but using step sizes near the
lower and the upper bound tend to produce unsatisfac-
tory results. Therefore, more realistic condition for p,
and pg is

& g K s K @2n

Ko?

x

NvV2040,

4. Algorithm Behavior

To examine the behavior of the CP-LMS algorithm, we
obtain the estimation error vectors

ps(n) = bs(n) — b (22)

Po(n) = bg(n) — b (23)
from b,(n) and b,(n). Also, we assume that the train-
ing input signal and the coefficient estimates are uncor-
related.

Combining (1), (2), (6), (7), and (22), we can con-
struct the recursive equation of p,(n) such that

ps(n+1)

— (L= pex(r)xT (1)), (n) + pox(n)v(n) . (24)

Thus, the mean behavior of ps(n) is described by
E{ps(n+1)} = (I - pusR)E{ps(n)} , (25)

1495

where R = E{x(n)xT(n)}.
The mean behavior of p,(n) is more complicated
due to the re-initializations, and is described by

E{ps(n+1)}
if n(mod M) =0 and
J

Bpant}={ Q0= =1 g
(I — paR)E{pa(n)}
otherwise
where

m+M
Om) =4 1 1fZE{e i) —e2(i)} <0 @7
0 otherw1se

To get some meaningful insight of the mean-square
behavior, we assume z(n) is a white gaussian signal,
so that R = 02I. Then, using (24), we can calculate
E{pT(n+1)ps(n+1)}, which reduces to

E{llps(n+ 1)} = B B{|p.(n)[|"} + Kplozo?
(28)

2
where ||ps(n)||” = pi(n)ps(n), 0 = E{v*(n)}, and
Bs =1 —2ps07 4 (K + 2)pioy.

Incorporating the re-initialization operations, the

mean-square behavior of p,(n) is described by

E{[lps(n+1)|*}
if n(mod M)=
J

[[ew—im)=
j=1

0 and
E{|lpa(n+ )|} =

BaE{||Pa(n) |} + K 20202
otherwise

(29)

where 3, = 1 — 2p,02% + (K +2) 202,

From (25), (26), (28), and (29), we can extract the
steady state properties of the CP-LMS algorithm, which
are

E{ps(oo)} = E{pa(oo)} =0 (30)
B{lp(09)’} = 5 e s G
B{[pa(c0)|} = 5Pl (32)

5. Simulations

The computer simulations are carried out to investigate
the performance gains obtained by using the CP-LMS
algorithm. The performance is measured with the norm
squared estimation error |p,(n)||? = ||b—ba(n)||%. The
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compared algorithms are the LMS algorithm with p =
0.001, the LMS algorithm with x = 0.01, the CP-LMS
algorithm with p, = 0.001, s = 0.01, M = 100, J = 3,
and the VSS algorithm[4] which employs a variable
step size p(n) defined as

Hmax lf M(n) > Mmaz
Hmin lf/-L(n) < Hmin
ap(n) +ve*(n)  otherwise

p(n+1)

(33)

where fimae = 0.01, thnin, = 0.001,a = 0.97, v =
0.00048, and e(n) is the estimation error [4].

The training input z(n) of length N = 10,000
is a white gaussian pseudo-random sequence with
E{z(n)} = 0 and E{z*(n)} = 1. The additive noise
v(n) is also a white gaussian pseudo-random sequence
with E{v(n)} = 0 and E{v?(n)} = 0.001. The estima-
tion target system is given by the all-zero model

2. 10—k
H(z)=0514) T P (34
k=0

where the scale factor 0.514 makes the input power and
the output power equal. Therefore, the SNR of the
training output d(n) is 30dB.

Figure 2 shows the simulation results, where
“LMS-1” denote the LMS algorithm with ¢ = 0.001
and “LMS-2” denote the LMS algorithm with p = 0.01.
The averaged data was not used so that the fluctuations
of the coefficient estimates can be observed, and the sim-
ulation data are reduced by a factor of 100 through sub-
sampling for simpler plots.

As we can see, the CP-LMS algorithm achieves the
best performance by converging to the smallest norm
squared estimation error in the shortest time. The con-
vergence speed is about 3 times faster than the slowest
one, and the estimation accuracy is about 10dB better
than the lowest one.
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Fig. 2 Norm squared estimation error plot.
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6. Conclusion

By employing two adaptive filters with different update
step sizes operating in parallel and complementing each
other, the CP-LMS algorithm achieves both the fast con-
vergence (tracking) speed and the small steady-state er-
ror for adaptive filtering. Also, compared with the con-
ventional variable step size algorithms for the adaptive
FIR filtering, the CP-LMS is more versatile, more ro-
bust and simpler to use in practice. Although the new
algorithm requires twice as many computations than the
single fixed step size algorithm, the performance gains
outweigh the extra cost.
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